Comparison of Parametric and Semi-Parametric Binary Response Models
نویسندگان
چکیده
منابع مشابه
Comparison of parametric and semi-parametric binary response models
A Bayesian semi-parametric estimation of the binary response model using Markov Chain Monte Carlo algorithms is proposed. The performances of the parametric and semi-parametric models are presented. The mean squared errors, receiver operating characteristic curve, and the marginal effect are used as the model selection criteria. Simulated data and Monte Carlo experiments show that unless the bi...
متن کاملBayesian Identification of Semi-Parametric Binary Response Models
In this paper, minimal conditions under which a semi-parametric binary response model is identified in a Bayesian framework are presented and compared to the conditions usually required in a sampling theory framework. Running headline: Semi-parametric Binary Response Models.
متن کاملBayesian evaluation of a semi-parametric binary response model
In this paper, we develop a Bayesian analysis of a semi-parametric binary choice model. The prior speciication of the functional parameter , namely the distribution function of a latent variable, is of the Dirichlet process type and the prior speciication of the Euclidean parameter , namely the coeecients of a linear combination of exogenous variables, is left arbitrary. The model identiication...
متن کاملSupplementary Materials to “Combining parametric, semi-parametric, and non-parametric survival models with stacked survival models”
Section 1 demonstrates the connection between the Brier Score in the absence of censoring versus the inverse probability-of-censoring weighted Brier Score. Section 2 derives the meansquared error decomposition presented in Section 3 of the main paper, and presents illustrations and examples regarding the impact of candidate survival models on performance. In addition, a simple example illustrat...
متن کاملCombining parametric, semi-parametric, and non-parametric survival models with stacked survival models.
For estimating conditional survival functions, non-parametric estimators can be preferred to parametric and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when misspecified, parametric and semi-parametric estimators can possess better operating characteristics in small sample sizes due to smaller variance than non-parametric estimators. Fundamenta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2013
ISSN: 1556-5068
DOI: 10.2139/ssrn.2294625